login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053691
Number of 11-core partitions of n.
2
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 45, 66, 79, 102, 121, 154, 176, 220, 248, 297, 330, 430, 452, 552, 605, 720, 777, 935, 990, 1182, 1265, 1485, 1530, 1838, 1892, 2214, 2310, 2684, 2750, 3238, 3289, 3850, 3960, 4500, 4599, 5370, 5404, 6220, 6325, 7238
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^11)^11 / f(-x) in powers of x where f() is a Ramanujan theta function.
Expansion of q^-5 * etq(q^11)^11 / eta(q) in powers of q. - Michael Somos, Nov 06 2014
Euler transform of period 11 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -10, ...]. - Michael Somos, Nov 06 2014
G.f. Product_{k>0} (1 - x^(11*k))^11 / (1 - x^k).
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^5 + q^6 + 2*q^7 + 3*q^8 + 5*q^9 + 7*q^10 + 11*q^11 + 15*q^12 + ...
MATHEMATICA
m = 50; CoefficientList[ Series[ Product[(1-q^(11*k))^11/(1-q^k), {k, 1, m}], {q, 0, m}], q] (* Jean-François Alcover, Jul 26 2011, after g.f. *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^11]^11 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 06 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^11 + A)^11 / eta(x + A), n))}; /* Michael Somos, Nov 06 2014 */
CROSSREFS
Column t=11 of A175595.
Sequence in context: A261776 A027344 A184645 * A242696 A218510 A026816
KEYWORD
easy,nice,nonn
AUTHOR
James A. Sellers, Feb 14 2000
STATUS
approved