login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053694
Number of self-conjugate 5-core partitions of n.
5
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 2, 0
OFFSET
0,13
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 258, Entry 9(iii).
LINKS
Frank Garvan, Dongsu Kim, and Dennis Stanton, Cranks and t-cores, Invent. Math. 101 (1990), no. 1, 1-17.
Christopher R. H. Hanusa and Rishi Nath, The number of self-conjugate core partitions, arxiv:1201.6629 [math.NT], 2012. See Table 1, p. 15.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
G.f.: product((1-q^(10*i))^2*(1-q^(10*i-5))*(1-q^(4*i-2))/((1-q^(2*i-1))*(1-q^(20*i-10))), i=1..200)
a(n) = b(n + 1) where b(n) is multiplicative and b(2^e) = b(5^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 3, 7 (mod 8).
Expansion of (phi(x)^2 - phi(x^5)^2) / (4*x) = chi(x) * f(-x^5) * f(-x^20) in powers of x where phi(), chi(), f() are Ramanujan theta functions.
From Michael Somos, Apr 25 2003: (Start)
Expansion of q^(-1) * eta(q^2)^2 * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 20 sequence [1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, ...].
G.f.: Product_{k>0} (1 - x^(10*k))^2 * (1 + x^(2*k - 1)) / (1 + x^(10*k - 5)). (End)
a(4*n) = A122190(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/5. - Amiram Eldar, Jan 27 2024
EXAMPLE
1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + 2*x^12 + x^15 + 2*x^16 + x^17 + ...
q + q^2 + q^4 + q^5 + q^8 + q^9 + q^10 + 2*q^13 + q^16 + 2*q^17 + q^18 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^2 - EllipticTheta[3, 0, q^5]^2) / (4 q), {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ QPochhammer[-q, q^2] QPochhammer[q^5, q^5] QPochhammer[q^20, q^20], {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=0, n\2, 1 + x^(2*k + 1), 1 + x * O(x^n)) * prod( k=0, n\10, (1 - x^(10*k + 10))^2 / (1 + x^(10*k + 5)), 1 + x*O(x^n)), n))}
(PARI) {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( -100, d)))}
(PARI) {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -100, p) * X))[n])}
(PARI) {a(n) = local(A); if(n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^20 + A) / eta(x + A) / eta(x^4 + A), n))}
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
James A. Sellers, Feb 14 2000
STATUS
approved