login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303206
Number of partitions of n into two prime parts (p,q) such that |q-p| is squarefree.
0
0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 0, 3, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 4, 0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 0, 5, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 6, 1, 0, 1, 3, 0, 0, 0, 1, 1, 0, 0, 5, 1, 0, 1, 4, 0, 0, 0, 3, 1, 0, 0, 7, 0, 0
OFFSET
1,16
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} A010051(i) * A010051(n-i) * A008966(n-2i).
MATHEMATICA
Table[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i] - PrimePi[n - i - 1]) MoebiusMu[n - 2 i]^2, {i, Floor[(n - 1)/2]}], {n, 100}]
Table[Count[IntegerPartitions[n, {2}], _?(AllTrue[#, PrimeQ]&&SquareFreeQ[#[[1]]-#[[2]]]&)], {n, 100}] (* Harvey P. Dale, Aug 05 2023 *)
PROG
(PARI) a(n) = sum(i=1, (n-1)\2, isprime(i)*isprime(n-i)*issquarefree(n-2*i)); \\ Michel Marcus, Apr 21 2018; corrected by Jun 14 2022
CROSSREFS
Sequence in context: A364046 A001899 A059882 * A094247 A053694 A085862
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 19 2018
STATUS
approved