|
|
A303208
|
|
Number of total dominating sets in the n X n rook graph.
|
|
2
|
|
|
0, 9, 334, 53731, 30844786, 66544564805, 556588617042914, 18376877842518517955, 2414913046805958120844234, 1267171440764716263069641387581, 2658150749788131925244338204731596650, 22299981643440069703358952237798936248817875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
b[0] = 1; b[n_] := (2^n - 1)^n + Sum[Binomial[n, i] Sum[(-1)^j (-1 + 2^(n - j))^i Binomial[n, j], {j, 0, n}], {i, n - 1}]; Table[Sum[(-1)^k Binomial[n, k]^2 k! b[n - k], {k, 0, n}], {n, 10}]
|
|
PROG
|
b(m, n)=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
c(n)=(2^n-1)^n + sum(i=1, n-1, b(n, i)*binomial(n, i));
a(n) = {sum(k=0, n, (-1)^k*binomial(n, k)^2*k!*c(n-k))} \\ Andrew Howroyd, Apr 20 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|