OFFSET
0,9
LINKS
F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17.
FORMULA
Euler transform of period 16 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, -4, ...]. - Michael Somos, Apr 28 2003
Expansion of q^(-21/8) * eta(q^2)^2 * eta(q^16)^4 / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 28 2003
G.f.: product((1-q^(16*i))^4*(1-q^(4*i-2))/(1-q^(2*i-1)), i=1..infinity)
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2^x*10 + 2*x^11 + ...
G.f. = q^21 + q^29 + q^45 + q^53 + q^61 + q^69 + q^77 + 2*q^85 + 2*q^93 + 2*q^101 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ x^16]^4 / (QPochhammer[ x] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^4 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Apr 28 2003 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, Feb 14 2000
STATUS
approved