OFFSET
1,2
COMMENTS
Partial products of the number of ordered factorizations of n as a product of 3 terms.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_4(gcd(i,j)) for 1 <= i,j <= n, where d_4(n) = A007426(n). - Enrique Pérez Herrero, Jan 20 2013
LINKS
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
FORMULA
a(n) = Product_{i=1..n} A007425(i).
a(n) = Product_{prime p<=n} Product_{k=1..floor(log_p(n))} (1 + 2/k)^floor(n/p^k). - Ridouane Oudra, Mar 23 2021
EXAMPLE
a(8) = 1 * 3 * 3 * 6 * 3 * 9 * 3 * 10 = 43740 = 2^2 * 3^7 * 5.
MATHEMATICA
Table[Product[Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 03 2018 *)
PROG
(PARI) f(n) = sumdiv(n, k, numdiv(k)); \\ A007425
a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 23 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Dec 03 2010
STATUS
approved