login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175596
Partial products of A007425.
2
1, 3, 9, 54, 162, 1458, 4374, 43740, 262440, 2361960, 7085880, 127545840, 382637520, 3443737680, 30993639120, 464904586800, 1394713760400, 25104847687200, 75314543061600, 1355661775108800, 12200955975979200, 109808603783812800, 329425811351438400, 9882774340543152000, 59296646043258912000, 533669814389330208000, 5336698143893302080000, 96060566590079437440000, 288181699770238312320000, 7780905893796434432640000
OFFSET
1,2
COMMENTS
Partial products of the number of ordered factorizations of n as a product of 3 terms.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_4(gcd(i,j)) for 1 <= i,j <= n, where d_4(n) = A007426(n). - Enrique Pérez Herrero, Jan 20 2013
LINKS
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
FORMULA
a(n) = Product_{i=1..n} A007425(i).
a(n) = Product_{prime p<=n} Product_{k=1..floor(log_p(n))} (1 + 2/k)^floor(n/p^k). - Ridouane Oudra, Mar 23 2021
EXAMPLE
a(8) = 1 * 3 * 3 * 6 * 3 * 9 * 3 * 10 = 43740 = 2^2 * 3^7 * 5.
MATHEMATICA
Table[Product[Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 03 2018 *)
PROG
(PARI) f(n) = sumdiv(n, k, numdiv(k)); \\ A007425
a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 23 2021
CROSSREFS
Cf. A000005, A007425, A007426, A061201 (partial sums), A127270, A143354.
Cf. A066843.
Sequence in context: A013341 A077795 A038496 * A261397 A238906 A363442
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Dec 03 2010
STATUS
approved