OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Tom Edgar, Extending Some Fibonacci-Lucas Relations, Fib. Quarterly, 54 (2016), 79.
D. Marques, A new Fibonacci-Lucas relation, Amer. Math. Monthly, 122 (2015), 683.
Ivica Martinjak, Complementary Families of the Fibonacci-Lucas Relations, arXiv:1508.04949 [math.CO], 2015.
Index entries for linear recurrences with constant coefficients, signature (3,9).
FORMULA
a(n) = 3*a(n-1) + 9*a(n-2), a(0)=0, a(1)=3. - G. C. Greubel, Aug 21 2015
G.f.: 3*x / (1 - 3*x - 9*x^2). - G. C. Greubel, Aug 21 2015
E.g.f.: (1/(phi - 1/phi))*(e^(3*phi*x) - e^(3*x/phi)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 21 2015
MATHEMATICA
RecurrenceTable[{a[0]== 0, a[1]== 3, a[n]== 3*a[n-1] + 9*a[n-2]}, a, {n, 50}] (* G. C. Greubel, Aug 21 2015 *)
LinearRecurrence[{3, 9}, {0, 3}, 30] (* Vincenzo Librandi, Aug 21 2015 *)
PROG
(PARI) vector(30, n, n--; 3^n*fibonacci(n)) \\ Michel Marcus, Aug 21 2015
(PARI) concat(0, Vec(-3*x/(9*x^2+3*x-1) + O(x^30))) \\ Colin Barker, Sep 01 2015
(Magma) [3^n*Fibonacci(n): n in [0..30]]; // Vincenzo Librandi, Aug 21 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 18 2015
STATUS
approved