login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261394
Expansion of phi(q)^4 / phi(q^3) in powers of q where phi() is a Ramanujan theta function.
2
1, 8, 24, 30, 8, 0, 36, 48, 24, 32, 48, 48, 30, 0, 48, 72, 8, 48, 96, 48, 0, 0, 96, 96, 36, 56, 48, 102, 48, 0, 120, 48, 24, 72, 48, 96, 32, 0, 96, 120, 48, 48, 144, 144, 48, 0, 96, 96, 30, 56, 120, 144, 0, 0, 108, 96, 48, 120, 144, 48, 72, 0, 144, 192, 8, 96
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 12 sequence [ 8, -12, 6, -4, 8, -9, 8, -4, 6, -12, 8, -3, ...].
a(n) = A004013(12*n).
EXAMPLE
G.f. = 1 + 8*x + 24*x^2 + 30*x^3 + 8*x^4 + 36*x^6 + 48*x^7 + 24*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4 / EllipticTheta[ 3, 0, q^3], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^20 * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^8 * eta(x^4 + A)^8 * eta(x^6 + A)^5), n))};
CROSSREFS
Cf. A004013.
Sequence in context: A212861 A333961 A038524 * A162829 A303796 A175368
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 17 2015
STATUS
approved