login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004013 Theta series of body-centered cubic (b.c.c.) lattice.
(Formerly M4473)
8
1, 0, 0, 8, 6, 0, 0, 0, 12, 0, 0, 24, 8, 0, 0, 0, 6, 0, 0, 24, 24, 0, 0, 0, 24, 0, 0, 32, 0, 0, 0, 0, 12, 0, 0, 48, 30, 0, 0, 0, 24, 0, 0, 24, 24, 0, 0, 0, 8, 0, 0, 48, 24, 0, 0, 0, 48, 0, 0, 72, 0, 0, 0, 0, 6, 0, 0, 24, 48, 0, 0, 0, 36, 0, 0, 56, 24, 0, 0, 0, 24, 0, 0, 72, 48, 0, 0, 0, 24, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

The bcc lattice is also called the coweight lattice A^*_3 (or D^*_3), dual to the root lattice A_3 (or D_3, or the fcc lattice), or the permutohedral lattice A^*_3. - Andrey Zabolotskiy, Mar 08 2020

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

John Cannon, Table of n, a(n) for n = 0..10000

S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc., 128 (1999), 1333-1338; F_4(q).

R. J. Mathar, Hierarchical Subdivision of the Simple Cubic Lattice, arXiv preprint arXiv:1309.3705 [math.MG], 2013.

G. Nebe and N. J. A. Sloane, Home page for this lattice

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Theta Series

Index entries for sequences related to b.c.c. lattice

FORMULA

subs(q=q^2, ph)^3+(2*sqrt(q))^3*subs(q=q^4, ps)^3, where ps = A010054 = Sum_{k=0..infinity} q^(k*(k+1)/2), ph = A000122 = Sum_{k=-infinity, infinity} q^(k^2).

Expansion of phi(q^4)^3 + 8 * q^3 * psi(q^8)^3 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006

a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A005875(n).

Expansion of theta_3(q)^3 + theta_2(q)^3 in powers of q^(1/4).

G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004015.

a(8*n) = A004015(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). - Michael Somos, Jul 19 2015

a(12*n + 4) = 6 * A213056(n). a(16*n + 4) = 6 * A045834(n). a(16*n + 8) = 12 * A045828(n).

EXAMPLE

G.f. = 1 + 8*x^3 + 6*x^4 + 12*x^8 + 24*x^11 + 8*x^12 + 6*x^16 + 24*x^19 + 24*x^20 + ...

G.f. = 1 + 8*q^(3/2) + 6*q^2 + 12*q^4 + 24*q^(11/2) + 8*q^6 + 6*q^8 + 24*q^(19/2) + 24*q^10 + 24*q^12 + 32*q^(27/2) + ...

MAPLE

M:=100; M1:=M*(M+1)/2; ph:=series(add(q^(k^2), k=-M..M), q, M1): ps:=series(add(q^(k*(k+1)/2), k=0..M), q, M1): t1:=series(subs(q=q^2, ph)^3, q, M1): t2:=series((2*sqrt(q))^3*subs(q=q^4, ps)^3, q, M1): t3:=seriestolist(series(subs(q=q^2, t1+t2), q, M1)): for n from 0 to nops(t3)-1 do lprint(n, t3[n+1]); od:

MATHEMATICA

m = 13; m1 = m*((m + 1)/2); ph[q_] = Series[ Sum[ q^k^2, {k, -m, m}], {q, 0, m1}]; ps[q_] = Series[ Sum[ q^(k*((k + 1)/2)), {k, 0, m}], {q, 0, m1}]; t1[q_] = Normal[ Series[ ph[q^2]^3, {q, 0, m1}]]; t2[q_] = Normal[ Series[ (2*Sqrt[q])^3*ps[q^4]^3, {q, 0, m1}]]; CoefficientList[ Series[ t1[q^2] + t2[q^2], {q, 0, m1}], q] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

(* From version 6 on *) terms=91; f[q_] = LatticeData["BodyCenteredCubic", "ThetaSeriesFunction"][-I Log[q]/Pi]; CoefficientList[Simplify[f[q] + O[q]^terms, q>0], q][[1 ;; terms]] (* Jean-François Alcover, May 15 2013, updated Jul 08 2017 *)

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^4]^3 + EllipticTheta[ 2, 0, x^4]^3, {x, 0, n}]; (* Michael Somos, May 24 2013 *)

PROG

(PARI) {a(n) = if( n<0, 0, if( n%4==0, n/=4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n))^3, n), n%8==3, n\=8; 8*polcoeff( sum(k=0, (sqrtint(8*n+1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n)))}; /* Michael Somos, Oct 25 2006 */

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A)^5 / eta(x^4 + A)^2 / eta(x^16 + A)^2)^3 + (2 * x * eta(x^16 + A)^2 / eta(x^8 + A))^3, n))}; /* Michael Somos, May 17 2008 */

(Magma) Basis( ModularForms( Gamma0(8), 3/2), 90) [1]; /* Michael Somos, Sep 04 2014 */

CROSSREFS

Cf. A004015, A005875, A008443, A045826, A045828, A045834, A213056.

Indices of nonzero terms are A004014.

Cf. A023916-A023936.

Cf. A004011, A008422, A008425, A008423, A008427, A008424, A008426.

Sequence in context: A010116 A031365 A300382 * A010118 A226317 A100121

Adjacent sequences:  A004010 A004011 A004012 * A004014 A004015 A004016

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 18:11 EDT 2022. Contains 357002 sequences. (Running on oeis4.)