login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261391
a(n) = n^5 + 5*n^3 + 5*n.
4
0, 11, 82, 393, 1364, 3775, 8886, 18557, 35368, 62739, 105050, 167761, 257532, 382343, 551614, 776325, 1069136, 1444507, 1918818, 2510489, 3240100, 4130511, 5206982, 6497293, 8031864, 9843875, 11969386, 14447457, 17320268, 20633239, 24435150, 28778261, 33718432, 39315243, 45632114
OFFSET
0,2
COMMENTS
Also numbers of the form (n-th metallic mean)^5 - 1/(n-th metallic mean)^5, see link to Wikipedia.
FORMULA
a(n) = ( (n+sqrt(n^2+4))/2 )^5 - 1/( (n+sqrt(n^2+4))/2 )^5.
a(n) = -a(-n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Colin Barker, Aug 18 2015
G.f.: x*(11*x^4+16*x^3+66*x^2+16*x+11) / (x-1)^6. - Colin Barker, Aug 18 2015
E.g.f.: (x^5 + 15*x^4 + 70*x^3 + 120*x^2 + 71*x + 11)*e^x. - G. C. Greubel, Aug 21 2015
MATHEMATICA
Array[#^5 + 5 #^3 + 5 # &, 34] (* Michael De Vlieger, Aug 18 2015 *)
Table[n^5 + 5*n^3 + 5*n, {n, 0, 50}] (* G. C. Greubel, Aug 21 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 11, 82, 393, 1364, 3775}, 40] (* Harvey P. Dale, May 07 2018 *)
PROG
(PARI) concat(0, Vec(x*(11*x^4+16*x^3+66*x^2+16*x+11)/(x-1)^6 + O(x^100))) \\ Colin Barker, Aug 18 2015
KEYWORD
nonn,easy
AUTHOR
Raphael Ranna, Aug 17 2015
EXTENSIONS
Offset changed from 1 to 0, initial 0 added and b-file adapted from Bruno Berselli, Aug 25 2015
STATUS
approved