login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261398
Integer coefficients arising from a formula for Sum_{m>=1} sin(Pi*m/3)^2/m^2.
2
1, 2, 6, 32, 230, 2112, 23548, 309248, 4675014, 79969280, 1527092468, 32203259904, 743288515164, 18638209056768, 504541774904760, 14664951970922496, 455522635895576646, 15058911973677465600, 527896878148304296900, 19559986314930028544000, 763820398700983273655796, 31353195811771939838492672
OFFSET
1,2
LINKS
R. Butler, On the Evaluation of Integral_{x=0..oo} (sin(t))^m/t^m dt by the Trapezoidal Rule, The American Mathematical Monthly, vol. 67, no. 6, 1960, pp. 566-69.
J. W. H. Swanepoel, On a generalization of a theorem by Euler, Journal of Number Theory 149 (2015) 46-56.
FORMULA
a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i*binomial(n,i)*(n-2*i)^(n-1).
a(n)/(2^n*(n-1)!) = A049330(n)/A049331(n).
a(n) = n * A099765(n). - Vladimir Reshetnikov, Sep 05 2016
MAPLE
A261398 := proc(n)
add( (-1)^i*binomial(n, i)*(n-2*i)^(n-1), i=0..floor((n-1)/2)) ;
end proc:
seq(A261398(n), n=1..25) ; # R. J. Mathar, Aug 19 2015
MATHEMATICA
Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}], {n, 1, 20}] (* Vladimir Reshetnikov, Sep 05 2016 *)
PROG
(PARI) a(n) = sum(i=0, (n-1)\2, (-1)^i*binomial(n, i)*(n-2*i)^(n-1)); \\ Michel Marcus, Sep 05 2016
(Magma) [(&+[(-1)^j*Binomial(n, j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Apr 01 2022
(Sage) [sum((-1)^j*binomial(n, j)*(n-2*j)^(n-1) for j in (0..(n//2))) for n in (1..25)] # G. C. Greubel, Apr 01 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 18 2015
STATUS
approved