The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066843 a(n) = Product_{k=1..n} d(k); d(k) = A000005(k) is the number of positive divisors of k. 18
 1, 1, 2, 4, 12, 24, 96, 192, 768, 2304, 9216, 18432, 110592, 221184, 884736, 3538944, 17694720, 35389440, 212336640, 424673280, 2548039680, 10192158720, 40768634880, 81537269760, 652298158080, 1956894474240, 7827577896960, 31310311587840, 187861869527040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_3(gcd(i,j)) for 1 <= i,j <= n, where d_3(n) is A007425. - Enrique Pérez Herrero, Aug 12 2011 a(n) is the number of integer sequences of length n where a(m) divides m for every term. - Franklin T. Adams-Watters, Oct 29 2017 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1310 (terms n = 1..200 from Harry J. Smith) Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49 Mathoverflow, Product of tau(k), 2015. Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (10). FORMULA a(n) = product{p=primes<=n} product{1<=k<=log(n)/log(p)} (1 +1/k)^floor(n/p^k). - Leroy Quet, Mar 20 2007 MAPLE with(numtheory):seq(mul(tau(k), k=1..n), n=0..26); # Zerinvary Lajos, Jan 11 2009 with(numtheory):a[0]:=1: for n from 2 to 26 do a[n]:=a[n-1]*tau(n) od: seq(a[n], n=0..26); # Zerinvary Lajos, Mar 21 2009 MATHEMATICA A066843[n_] := Product[DivisorSigma[0, i], {i, 1, n}]; Array[A066843, 20] (* Enrique Pérez Herrero, Aug 12 2011 *) FoldList[Times, Array[DivisorSigma[0, #] &, 27]] (* Michael De Vlieger, Nov 01 2017 *) PROG (PARI) { p=1; for (n=1, 200, p*=length(divisors(n)); write("b066843.txt", n, " ", p) ) } \\ Harry J. Smith, Apr 01 2010 CROSSREFS Cf. A000005, A001088, A066780. Sequence in context: A367703 A320931 A096421 * A051905 A051426 A048148 Adjacent sequences: A066840 A066841 A066842 * A066844 A066845 A066846 KEYWORD nonn AUTHOR Leroy Quet, Jan 20 2002 EXTENSIONS a(0)=1 prepended by Alois P. Heinz, Jul 19 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 09:51 EST 2024. Contains 370228 sequences. (Running on oeis4.)