login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096421
a(1)=1; for n > 1, a(n) = Sum_{1<=j<n, gcd(j,n)=1} a(j)*a(n-j).
2
1, 1, 2, 4, 12, 24, 88, 224, 720, 1792, 7200, 16512, 69952, 185984, 608896, 1797120, 7495424, 17936896, 79457792, 211576832, 742306816, 2190231552, 9482688512, 23198867456, 97967427584, 285227057152, 1046412681216, 3019819909120
OFFSET
1,3
FORMULA
a(1) = 1, a(n) = Sum_{j=1..n-1} floor(1/gcd(n, j))*a(j)*a(n-j). - Farideh Firoozbakht, Aug 09 2004
EXAMPLE
Since 1 and 5 are the positive integers < 6 and coprime to 6, a(6) = a(1)*a(5) + a(5)*a(1) = 1*12 + 12*1 = 24.
MATHEMATICA
a[1]=1; a[n_]:=a[n]=Sum[Floor[1/GCD[j, n]]a[j]a[n-j], {j, n-1}]; Table[a[n], {n, 30}] (* Farideh Firoozbakht, Aug 09 2004 *)
a[1] = 1; a[n_] := a[n] = Sum[ If[GCD[j, n] == 1, a[j]a[n - j], 0], {j, n - 1}]; Table[ a[n], {n, 28}] (* Robert G. Wilson v, Aug 11 2004 *)
PROG
(PARI) {m=28; v=vector(m); v[1]=1; for(n=2, m, s=0; for(j=1, n-1, if(gcd(j, n)==1, s=s+v[j]*v[n-j])); v[n]=s); for(i=1, m, print1(v[i], ", "))} \\ Klaus Brockhaus, Aug 09 2004
CROSSREFS
Sequence in context: A367173 A367703 A320931 * A066843 A051905 A051426
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 08 2004
EXTENSIONS
More terms from Farideh Firoozbakht, Klaus Brockhaus and Robert G. Wilson v, Aug 09 2004
STATUS
approved