login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320931
a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.
3
1, 2, 4, 12, 24, 80, 292, 966, 3876, 15554, 61608, 254612, 1065676, 4471672, 19074968, 82043172, 354365492, 1543432514, 6760146292, 29732837780, 131440491584, 583419967664, 2598585783488, 11615321544700, 52079369904384, 234157152231726, 1055628140278948, 4770576024205060
OFFSET
0,2
COMMENTS
Also the number of integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)/2.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300 (first 101 terms from Seiichi Manyama)
FORMULA
a(n) ~ c * d^n / n^(7/4), where d = 4.818071572655... and c = 0.5869031198... - Vaclav Kotesovec, Oct 29 2018
EXAMPLE
Solutions (a_1, a_2, ... , a_4) to the equation a_1^2 + 2*a_2^2 + ... + 4*a_4^2 = 10.
-------------------------------------------------------------------------------------
( 1, 1, 1, 1), ( 1, 1, 1, -1),
( 1, 1, -1, 1), ( 1, 1, -1, -1),
( 1, -1, 1, 1), ( 1, -1, 1, -1),
( 1, -1, -1, 1), ( 1, -1, -1, -1),
(-1, 1, 1, 1), (-1, 1, 1, -1),
(-1, 1, -1, 1), (-1, 1, -1, -1),
(-1, -1, 1, 1), (-1, -1, 1, -1),
(-1, -1, -1, 1), (-1, -1, -1, -1),
( 2, 1, 0, 1), ( 2, 1, 0, -1),
( 2, -1, 0, 1), ( 2, -1, 0, -1),
(-2, 1, 0, 1), (-2, 1, 0, -1),
(-2, -1, 0, 1), (-2, -1, 0, -1).
MATHEMATICA
nmax = 25; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2018
STATUS
approved