login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320932
a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} Sum_{m>=0} x^(k*m^2).
6
1, 1, 1, 2, 2, 6, 20, 51, 141, 381, 1001, 2796, 7861, 22306, 64129, 185692, 540468, 1585246, 4674464, 13846636, 41216933, 123176849, 369410571, 1111661833, 3355466306, 10156304314, 30821794651, 93761053797, 285859742756, 873355481467, 2673455511946, 8198687383812
OFFSET
0,4
COMMENTS
Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)/2.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300 (first 101 terms from Seiichi Manyama)
FORMULA
a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function.
EXAMPLE
1*1^2 + 2*1^2 + 3*1^2 + 4*1^2 + 5*1^2 = 15.
1*2^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*1^2 = 15.
1*0^2 + 2*2^2 + 3*1^2 + 4*1^2 + 5*0^2 = 15.
1*3^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*0^2 = 15.
1*1^2 + 2*1^2 + 3*2^2 + 4*0^2 + 5*0^2 = 15.
1*2^2 + 2*2^2 + 3*1^2 + 4*0^2 + 5*0^2 = 15.
So a(5) = 6.
MAPLE
b:= proc(n, i) option remember; local j; if n=0 then 1
elif i<1 then 0 else b(n, i-1); for j while
i*j^2<=n do %+b(n-i*j^2, i-1) od; % fi
end:
a:= n-> b(n*(n+1)/2, n):
seq(a(n), n=0..40); # Alois P. Heinz, Oct 28 2018
MATHEMATICA
nmax = 30; Table[SeriesCoefficient[Product[(EllipticTheta[3, 0, x^k] + 1)/2, {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
PROG
(PARI) {a(n) = polcoeff(prod(i=1, n, sum(j=0, sqrtint(n*(n+1)\(2*i)), x^(i*j^2)+x*O(x^(n*(n+1)/2)))), n*(n+1)/2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2018
STATUS
approved