The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036006 Number of partitions of n into parts not of the form 25k, 25k+7 or 25k-7. Also number of partitions with at most 6 parts of size 1 and differences between parts at distance 11 are greater than 1. 0
 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 120, 154, 201, 255, 328, 412, 524, 654, 821, 1017, 1267, 1558, 1924, 2353, 2884, 3507, 4272, 5166, 6256, 7531, 9069, 10868, 13027, 15543, 18546, 22045, 26194, 31020, 36719, 43331, 51109, 60120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Case k=12,i=7 of Gordon Theorem. REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. LINKS FORMULA a(n) ~ exp(2*Pi*sqrt(11*n/3)/5) * 11^(1/4) * cos(11*Pi/50) / (3^(1/4) * 5^(3/2) * n^(3/4)). - Vaclav Kotesovec, May 10 2018 MATHEMATICA nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(25*k))*(1 - x^(25*k+ 7-25))*(1 - x^(25*k- 7))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *) CROSSREFS Sequence in context: A035976 A035985 A035995 * A027341 A262371 A184642 Adjacent sequences:  A036003 A036004 A036005 * A036007 A036008 A036009 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 06:43 EDT 2021. Contains 346435 sequences. (Running on oeis4.)