login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331698
a(n) = (1/2) * ((greatest prime < (n+1)^2) - (least prime > n^2)) for n >= 2.
1
1, 1, 3, 1, 5, 4, 6, 7, 6, 6, 9, 10, 13, 12, 13, 12, 14, 15, 19, 18, 18, 15, 21, 21, 25, 20, 26, 17, 23, 27, 28, 31, 30, 31, 35, 33, 32, 37, 34, 33, 35, 36, 34, 43, 39, 42, 45, 33, 45, 45, 48, 45, 53, 42, 46, 55, 49, 51, 56, 53, 60, 52, 60, 60, 63, 64, 61, 53
OFFSET
2,3
LINKS
EXAMPLE
a(2) = 1 because 7 is the greatest prime < 3^2 and 5 is the least prime > 2^2. (7-5)/2 = 1.
PROG
(PARI) for(n=2, 69, print1((precprime((n+1)^2)-nextprime(n^2))/2, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jan 27 2020
STATUS
approved