login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n with prime rank.
0

%I #23 Dec 20 2024 11:27:25

%S 0,0,1,1,1,3,3,6,6,10,12,19,22,33,38,54,65,91,106,145,173,228,274,356,

%T 424,545,652,823,986,1232,1468,1822,2172,2665,3173,3869,4590,5568,

%U 6591,7938,9386,11249,13256,15821,18608,22100,25941,30695,35933,42373,49501,58160,67814,79434,92396,107932

%N Number of partitions of n with prime rank.

%H Alois P. Heinz, <a href="/A363241/b363241.txt">Table of n, a(n) for n = 1..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Rank_of_a_partition">Rank of a partition</a>

%F G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * Sum_{p prime} x^(k*p).

%F a(n) = Sum_{p prime} A063995(n,p). - _Alois P. Heinz_, Dec 20 2024

%e a(6) = 3 counts these partitions: 6, 5+1, 4+2.

%p b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n,

%p `if`(isprime(i-c), 1, 0), b(n-i, i, c+1)+b(n, i+1, c)))

%p end:

%p a:= n-> b(n, 1$2):

%p seq(a(n), n=1..56); # _Alois P. Heinz_, May 23 2023

%t b[n_, i_, c_] := b[n, i, c] = If[i > n, 0, If[i == n, If[i-c > 0 && PrimeQ[i-c], 1, 0], b[n-i, i, c+1] + b[n, i+1, c]]];

%t a[n_] := b[n, 1, 1];

%t Table[a[n], {n, 1, 56}] (* _Jean-François Alcover_, Dec 20 2024, after _Alois P. Heinz_ *)

%o (PARI) my(N=60, x='x+O('x^N)); concat([0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*sum(j=1, N, isprime(j)*x^(k*j)))))

%Y Cf. A000041, A010051, A037032, A063995.

%K nonn,easy,changed

%O 1,6

%A _Seiichi Manyama_, May 23 2023