login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171667 Lesser of a pair of twin primes (p,p+2) sandwiched between two numbers (p-1,p+3) having the same number of divisors. 4
11, 29, 59, 431, 599, 827, 1031, 1319, 1619, 1787, 2111, 2141, 2267, 2687, 2711, 3299, 3329, 3371, 3527, 3671, 4001, 4091, 4229, 4259, 5021, 5099, 5519, 5867, 6299, 6659, 6779, 7331, 7457, 8087, 8231, 8387, 8627, 8861, 8999, 9419, 9461, 9767, 10139 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
First term 11: 10={1,2,5,10},14={1,2,7,14} Second term 29: 28={1,2,4,7,14,28},32={1,2,4,8,16,32}
MATHEMATICA
f[n_]:=Length[Divisors[n]]; lst={}; Do[p=Prime[n]; If[PrimeQ[p+2]&&f[p-1]==f[p+3], AppendTo[lst, p]], {n, 7!}]; lst
Select[Range[11000], DivisorSigma[0, #-1]==DivisorSigma[0, #+3]&&AllTrue[{#, #+2}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 04 2019 *)
PROG
(PARI) forprime(p=o=0, 1e4, (2+o==o=p)&&numdiv(p-3)==numdiv(p+1)&&print1(p-2", ")) \\ M. F. Hasler, Jul 31 2015
CROSSREFS
Sequence in context: A054692 A056256 A329403 * A340573 A043139 A043919
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name edited by M. F. Hasler, Jul 31 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 10:38 EST 2023. Contains 367722 sequences. (Running on oeis4.)