|
|
A171664
|
|
Numbers k such that (Product_{d|k} d) - k - 1 and (Product_{d|k} d) + k + 1 are primes.
|
|
0
|
|
|
4, 6, 9, 14, 18, 21, 27, 57, 69, 77, 141, 155, 161, 194, 261, 381, 428, 551, 579, 620, 626, 671, 672, 704, 720, 755, 1007, 1349, 1506, 1529, 1611, 1659, 1707, 1710, 1814, 1982, 1986, 1994, 2036, 2037, 2157, 2429, 2651, 2714, 2771, 2783, 2966, 3039, 3044, 3101
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
Divisors of 6: 1,2,3,6. As 6*3*2*1 = 36, 36 - 6 - 1 = 29 is prime, and 36 + 6 + 1 = 43 is prime, 6 is a term.
|
|
MATHEMATICA
|
f[n_]:=PrimeQ[Times@@Divisors[n]-n-1]&&PrimeQ[Times@@Divisors[n]+n+1]; lst={}; Do[If[f[n], AppendTo[lst, n]], {n, 7!}]; lst
Select[Range[3200], AllTrue[Times@@Divisors[#]+{(#+1), (-#-1)}, PrimeQ]&] (* Harvey P. Dale, Aug 30 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|