OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 1, -2, 1).
FORMULA
a(n) = floor(n*(2*n + 1)/6).
a(n) = A078617(-1 - n) for all n in Z.
a(n) = floor((n+1)/(exp(3/(n+1)) - 1)). - Richard R. Forberg, Jun 22 2013
G.f.: -x^2*(x^4 + x^2 + x + 1)/( (x+1) * (x^2+x+1) * (x^2-x+1) * (x-1)^3). - Alois P. Heinz, Jun 24 2013
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8); a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=9, a(6)=13, a(7)=17. - Harvey P. Dale, Oct 15 2014
MATHEMATICA
Table[Floor[(2n^2+n)/6], {n, 0, 60}] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 1}, {0, 0, 1, 3, 6, 9, 13, 17}, 60] (* Harvey P. Dale, Oct 15 2014 *)
PROG
(PARI) {a(n) = (2 * n^2 + n) \ 6};
(Magma) [Floor((2*n^2+n)/6): n in [0..60]]; // G. C. Greubel, Sep 25 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 14 2009
STATUS
approved