login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171662 a(n) = floor((2*n^2 + n)/6). 2
0, 0, 1, 3, 6, 9, 13, 17, 22, 28, 35, 42, 50, 58, 67, 77, 88, 99, 111, 123, 136, 150, 165, 180, 196, 212, 229, 247, 266, 285, 305, 325, 346, 368, 391, 414, 438, 462, 487, 513, 540, 567, 595, 623, 652, 682, 713, 744, 776, 808, 841, 875, 910, 945 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 1, -2, 1).

FORMULA

a(n) = floor(n*(2*n + 1)/6).

a(n) = A078617(-1 - n) for all n in Z.

a(n) = floor((n+1)/(exp(3/(n+1)) - 1)). - Richard R. Forberg, Jun 22 2013

G.f.: -(x^6 + x^4 + x^3 + x^2)/(x^8 - 2*x^7 + x^6 - x^2 + 2*x - 1). - Alois P. Heinz, Jun 24 2013

a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8); a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=9, a(6)=13, a(7)=17. - Harvey P. Dale, Oct 15 2014

EXAMPLE

G.f. = x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 13*x^6 + 17*x^7 + 22*x^8 + 28*x^9 + ...

MATHEMATICA

Table[Floor[(2n^2+n)/6], {n, 0, 60}] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 1}, {0, 0, 1, 3, 6, 9, 13, 17}, 60] (* Harvey P. Dale, Oct 15 2014 *)

PROG

(PARI) {a(n) = (2 * n^2 + n) \ 6};

(MAGMA) [Floor((2*n^2+n)/6): n in [0..60]]; // G. C. Greubel, Sep 25 2018

CROSSREFS

Cf. A078617.

Sequence in context: A004129 A219646 A185173 * A302292 A235269 A004137

Adjacent sequences:  A171659 A171660 A171661 * A171663 A171664 A171665

KEYWORD

nonn

AUTHOR

Michael Somos, Dec 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 08:15 EDT 2019. Contains 328051 sequences. (Running on oeis4.)