login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359355
a(n) = A359107(2*n, n) = Sum_{j=0..n} Stirling2(2*n, j) = Sum_{j=0..n} A048993(2*n, j).
2
1, 1, 8, 122, 2795, 86472, 3403127, 164029595, 9433737120, 635182667816, 49344452550230, 4371727233798927, 437489737355466560, 49048715505983309703, 6116937802946210183545, 843220239072837883168510, 127757559136845878072576947, 21166434937698025552654090472
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of an 2n-set that contain at most n nonempty subsets.
LINKS
FORMULA
a(n) = A102661(2n,n) for n >= 1. - Alois P. Heinz, Jun 13 2023
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(expand(b(n-j)*binomial(n-1, j-1)*x), j=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i), i=0..n))(b(2*n, 0)):
seq(a(n), n=0..17); # Alois P. Heinz, Jun 13 2023
PROG
(PARI) a(n) = sum(j=0, n, stirling(2*n, j, 2)); \\ Michel Marcus, Dec 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 27 2022
STATUS
approved