login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361308
G.f. A(x) satisfies A(x) = Series_Reversion(x - x^4*A'(x)).
7
1, 1, 8, 122, 2676, 75197, 2548336, 100461956, 4500071172, 225305924896, 12456434569184, 753380353835754, 49473301917640864, 3505613955205438686, 266627715169575108168, 21667902182055638829520, 1873978995774161192935320, 171874439346918445003163152
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^(3*n-2) may be defined by the following.
(1) A(x) = Series_Reversion(x - x^4*A'(x)).
(2) A(x) = x + A(x)^4 * A'(A(x)).
(3) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(4*n-1) * A'(x)^n / n! ).
(4) A'(x) = Sum_{n>=0} d^n/dx^n x^(4*n) * A'(x)^n / n! is the g.f. of A361541.
(5) a(n) = A361541(n-1)/(3*n-2) for n >= 1.
EXAMPLE
G.f.: A(x) = x + x^4 + 8*x^7 + 122*x^10 + 2676*x^13 + 75197*x^16 + 2548336*x^19 + 100461956*x^22 + 4500071172*x^25 + ... + a(n)*x^(3*n-2) + ...
By definition, A(x - x^4*A'(x)) = x, where
A'(x) = 1 + 4*x^3 + 56*x^6 + 1220*x^9 + 34788*x^12 + 1203152*x^15 + 48418384*x^18 + 2210163032*x^21 + ... + A361541(n)*x^(3*n) + ...
Also,
A'(x) = 1 + (d/dx x^4*A'(x)) + (d^2/dx^2 x^8*A'(x)^2)/2! + (d^3/dx^3 x^12*A'(x)^3)/3! + (d^4/dx^4 x^16*A'(x)^4)/4! + (d^5/dx^5 x^20*A'(x)^5/5! + ... + (d^n/dx^n x^(4*n)*A'(x)^n)/n! + ...
Further,
A(x) = x * exp( x^3*A'(x) + (d/dx x^7*A'(x)^2)/2! + (d^2/dx^2 x^11*A'(x)^3)/3! + (d^3/dx^3 x^15*A'(x)^4)/4! + (d^4/dx^4 x^19*A'(x)^5)/5! + ... + (d^(n-1)/dx^(n-1) x^(4*n-1)*A'(x)^n)/n! + ... ).
PROG
(PARI) {a(n) = my(A=x+x^3); for(i=1, n, A = serreverse(x - x^4*A' +x*O(x^(3*n)))); polcoeff(A, 3*n-2)}
for(n=1, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2023
STATUS
approved