login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229619
G.f. satisfies: A(x) = Series_Reversion(x - x^2*A'(x)).
15
1, 1, 4, 27, 248, 2822, 37820, 578915, 9918924, 187558638, 3873705128, 86692262942, 2089070253556, 53925007946392, 1484529898970648, 43421639185592359, 1344923240469786704, 43981996770022295714, 1514531024603022580980, 54783958839510354056018, 2077007174758224026216216
OFFSET
1,3
COMMENTS
a(n) = A360950(n-1)/n for n >= 1. [corrected by Vaclav Kotesovec, Feb 27 2023]
LINKS
FORMULA
G.f. satisfies: A(x) = x + A(x)^2 * A'(A(x))).
a(n) ~ c * n! * n^(3*LambertW(1) - 2 + 1/(1 + LambertW(1))) / LambertW(1)^n, where c = 0.109236306585641816289... - Vaclav Kotesovec, Feb 27 2023
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2822*x^6 + ...
By definition, A(x - x^2*A’(x)) = x, where
A’(x) = 1 + 2*x + 12*x^2 + 108*x^3 + 1240*x^4 + 16932*x^5 + 264740*x^6 + 4631320*x^7 + ... + A360950(n)*x^n + ...
Related expansions.
A'(A(x)) = 1 + 2*x + 14*x^2 + 140*x^3 + 1726*x^4 + 24752*x^5 + ...
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 62*x^5 + 566*x^6 + 6356*x^7 + ...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=serreverse(x-x^2*A'+x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A360950.
Sequence in context: A212559 A265268 A121063 * A051863 A000699 A138423
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2013
STATUS
approved