login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242805
Integers n such that each of n, n + 1, n + 2, n + 4, n + 5, n + 6 is the squarefree product of three primes.
5
73293, 120237, 122613, 130429, 143493, 147953, 171893, 180965, 199833, 213153, 219201, 268017, 287493, 298433, 299553, 300093, 313701, 329793, 332889, 341781, 363597, 369393, 376201, 392509, 404453, 432393, 460801, 475809, 493597, 503457, 506517, 508677
OFFSET
1,1
COMMENTS
It is remarkable that this sequence starts with considerably bigger density than the analog A242804 for squarefree integers with two prime divisors. The exceptional density causes the problem that overlapping sextets appear very soon and rather frequently, whereas in A242804 the phenomenon of overlapping sextets does not occur up to the bound 9*10^9.
In fact, there exist 114 nonets n, n + 1, n + 2, n + 4, n + 5, n + 6, n + 8, n + 9, n + 10 of squarefree integers with exactly three prime divisors, up to 10^8. The PARI script in PROG does not start a new sextet before the previous sextet was completed. The impact on bigger clusters, such as nonets and dodekuplets, is illustrated in the CAVEAT of section EXAMPLE.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 176 terms from Zak Seidov)
EXAMPLE
73293 = 3*11*2221, 73294 = 2*13*2819, 73295 = 5*107*137,
73297 = 7*37*283, 73298 = 2*67*547, 73299 = 3*53*461.
CAVEAT:
(1) For the dodekuplet, which starts together with the first nonet,
969833 = 17*89*641, 969834 = 2*3*161639, 969835 = 5*31*6257,
969837 = 3*11*29389, 969838 = 2*173*2803, 969839 = 13*61*1223,
969841 = 23*149*283, 969842 = 2*59*8219, 969843 = 3*7*46183,
969845 = 5*47*4127, 969846 = 2*3*161641, 969847 = 29*53*631.
Not all PARI scripts list 969833 and 969841, but not 969837.
(2) For the second nonet,
1450257 = 3*229*2111, 1450258 = 2*179*4051, 1450259 = 83*101*173,
1450261 = 29*43*1163, 1450262 = 2*11*65921, 1450263 = 3*191*2531,
1450265 = 5*23*12611, 1450266 = 2*3*241711, 1450267 = 7*13*15937,
the PARI script lists 1450257 only, but not 1450261.
MATHEMATICA
s = {}; Do[If[AllTrue[{k, k + 1, k + 2, k + 4, k + 5, k + 6}, SquareFreeQ] && {3, 3, 3, 3, 3, 3} == PrimeOmega[{k, k + 1, k + 2, k + 4, k + 5, k + 6}], AppendTo[s, k]], {k, 73293, 2000000, 4}]; s (* Zak Seidov, Nov 12 2018 *)
PROG
(PARI)
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=3; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1<n, loc=1; i=n; ); ); if(3==loc, if(j+1==n, k=n; ); if(j+1<n, loc=1; i=n; ); ); if(4==loc, if(k+2==n, l=n; ); if(k+2<n, loc=1; i=n; ); ); if(5==loc, if(l+1==n, m=n; ); if(l+1<n, loc=1; i=n; ); ); if(6==loc, if(m+1==n, print1(i, ", "); loc=0; ); if(m+1<n, loc=1; i=n; ); ); ); ); }
(PARI)
is(n) = {my(f=factor(n)); matsize(f)==[3, 2] && vecmax(f[ , 2])==1};
isok(v) = vecextract(v, "^4")==[1, 1, 1, 1, 1, 1]; v = vector(7); for(k=8, 550000, v=concat(vecextract(v, "^1"), is(k+6)); if(isok(v), print1(k, ", "))) \\ Amiram Eldar, Nov 13 2018
(PARI) upto(n) = {my(res = List(), streak = 1); for(i = 31, n+6, if(factor(i)[, 2] == [1, 1, 1]~, streak++; if(streak % 4 == 3 && streak >= 7, listput(res, i-6)), if(streak % 4 == 3, streak++, streak = 0))); res} \\ David A. Corneth, Nov 13 2018
CROSSREFS
Cf. A242793 and A242804 (two primes), A242806 (four primes), A242829 (five primes).
Sequence in context: A023185 A244254 A184769 * A250838 A365309 A105648
KEYWORD
nonn
AUTHOR
STATUS
approved