login
A365309
Primes p such that the six consecutive primes starting with p are congruent to {6, 5, 4, 3, 2, 1} (mod 7).
1
73471, 307537, 634577, 777671, 1381141, 1886107, 1907527, 2449327, 2505187, 3078431, 3110771, 3299323, 4076477, 4088587, 4666801, 4829257, 4930043, 5069567, 5209301, 5416291, 5513941, 5711551, 6049567, 6053627, 6217091, 7216691, 8057867, 8352301, 8476817, 8635717, 8821231, 8848811, 9073819
OFFSET
1,1
LINKS
EXAMPLE
The six consecutive primes starting with a(3) = 634577 are 634577, 634597, 634603, 634609, 634643, 634649, which are congruent to 6, 5, 4, 3, 2, 1 respectively (mod 7).
MAPLE
P:= [0$6]: P7:= [0$6]: E:= [seq(i, i=6..1, -1)];
R:= NULL: count:= 0: p:= 0:
while count < 10 do
p:= nextprime(p);
P:= [op(P[2..6]), p];;
P7:= [op(P7[2..6]), p mod 7];
if P7 = E then count:= count+1; R:= R, P[1]; fi
od:
R;
MATHEMATICA
Prime/@SequencePosition[Mod[Prime[Range[610000]], 7], {6, 5, 4, 3, 2, 1}][[;; , 1]] (* Harvey P. Dale, Sep 20 2023 *)
CROSSREFS
Cf. A215599.
Sequence in context: A184769 A242805 A250838 * A105648 A337740 A180300
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Aug 31 2023
STATUS
approved