login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337740
Weird numbers (A006037) with an even sum of divisors that are not Zumkeller numbers (A083207).
1
73616, 682592, 2081824, 3963968, 4960448, 5440192, 6621632, 8000704, 8134208, 12979264, 31297472, 33736064, 43955584, 55691392, 58433152, 58904704, 160074368, 254533504, 263654656, 266828032, 267369728, 272240768, 352668416, 353383168, 357542656, 431462656, 530110208
OFFSET
1,1
COMMENTS
Non-deficient numbers (A023196) with an even sum of divisors (A000203) that are neither pseudoperfect numbers (A005835) nor Zumkeller numbers (A083207).
Equivalently, numbers k such that sigma(k) >= 2*k and sigma(k) == 0 (mod 2), such that no subset of the aliquot divisors of k sums to k or to sigma(k)/2.
LINKS
EXAMPLE
73616 is a term since sigma(73616) = 147312 is even and larger than 2 * 73616 = 147232. No subset of the aliquot divisors of 73616 sums to 73616 or to sigma(73616)/2 = 73656.
MATHEMATICA
seqQ[n_] := Module[{d = Divisors[n], sum, c, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, c = CoefficientList[Product[1 + x^i, {i, d}], x]; c[[1 + 2*n]] == 0 && c[[1 + sum/2]] == 0]]; Select[Range[10^6], seqQ]
CROSSREFS
Intersection of A006037 and A171641.
Sequence in context: A250838 A365309 A105648 * A180300 A172640 A172741
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 17 2020
STATUS
approved