

A105648


Smallest member of a set of Smith triples.


2



73615, 209065, 225951, 283745, 305455, 342879, 656743, 683670, 729066, 747948, 774858, 879221, 954590, 1185547, 1262722, 1353955, 1369374, 1495718, 1622495, 1666434, 1790480, 2197579, 2299772, 2428854, 2561678, 2576441, 2580367, 2636516, 2665480, 2707580, 2741816
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If there are 3 consecutive numbers which are Smith numbers, these can be called as Smith triple.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
S. S. Gupta, Smith Numbers.


EXAMPLE

a(1) = 73615 because 73615 is the smallest member of a set of 3 consecutive numbers which are Smith numbers i.e. three consecutive numbers 73615,73616,73617 are all Smith numbers.


MATHEMATICA

digSum[n_] := Plus @@ IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last@#*digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; sm = smithQ /@ Range[3]; seq = {}; Do[sm = Join[Rest[sm], {smithQ[k]}]; If[And @@ sm, AppendTo[seq, k  2]], {k, 4, 10^6}]; seq (* Amiram Eldar, Aug 18 2020 *)


CROSSREFS

Cf. A006753, A050219, A059754, A105649, A105650.
Sequence in context: A184769 A242805 A250838 * A337740 A180300 A172640
Adjacent sequences: A105645 A105646 A105647 * A105649 A105650 A105651


KEYWORD

nonn,base


AUTHOR

Shyam Sunder Gupta, May 03 2005


EXTENSIONS

More terms from Amiram Eldar, Aug 18 2020


STATUS

approved



