login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers n such that each of n, n+1, n+2, n+4, n+5, n+6 is the squarefree product of five primes.
4

%I #24 Jul 10 2015 20:02:54

%S 6639266409,8628052209,12692281897,14492398389,15798643881,

%T 18883291565,20404935965,20825703713,21342970293,21597222381,

%U 22221458853,22567169229,22578915665,23000623161,23198162685,23247729109,24163642653,24802386189,24894100941,26297281109

%N Integers n such that each of n, n+1, n+2, n+4, n+5, n+6 is the squarefree product of five primes.

%C This is a higher analog to A242804, A242805, A242806.

%C It is very tough to compute this sequence on a single machine. Therefore, the interval from 0 to 9*10^9 was subdivided into 9 partial intervals, of length 10^9 each, and scanned by different computers. Nevertheless the CPU time was extrapolated for a single machine and summed up to 30 hours for the first member 6639266409 and 47 hours (~2 days) for the second member 8628052209. Up to 10^10, there is no occurrence of a next term.

%H Jens Kruse Andersen, <a href="/A242829/b242829.txt">Table of n, a(n) for n = 1..195</a>

%e a(1) = 6639266409 = 3 * 29 * 109 * 421 * 1663,

%e 6639266410 = 2 * 5 * 7 * 113 * 839351,

%e 6639266411 = 17 * 23 * 89 * 101 * 1889,

%e 6639266413 = 13 * 61 * 79 * 131 * 809,

%e 6639266414 = 2 * 11 * 349 * 857 * 1009,

%e 6639266415 = 3 * 5 * 73 * 149 * 40693;

%e and

%e a(2) = 8628052209 = 3 * 7 * 19 * 863 * 25057,

%e 8628052210 = 2 * 5 * 251 * 953 * 3607,

%e 8628052211 = 17 * 43 * 179 * 233 * 283,

%e 8628052213 = 11 * 47 * 127 * 331 * 397,

%e 8628052214 = 2 * 53 * 107 * 131 * 5807,

%e 8628052215 = 3 * 5 * 23 * 31 * 806737.

%o (PARI)

%o { default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=5; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1<n, loc=1; i=n; ); ); if(3==loc, if(j+1==n, k=n; ); if(j+1<n, loc=1; i=n; ); ); if(4==loc, if(k+2==n, l=n; ); if(k+2<n, loc=1; i=n; ); ); if(5==loc, if(l+1==n, m=n; ); if(l+1<n, loc=1; i=n; ); ); if(6==loc, if(m+1==n, print1(i,","); loc=0; ); if(m+1<n, loc=1; i=n; ); ); ); ); }

%Y Cf. A242793 and A242804, A242805, A242806.

%K nonn

%O 1,1

%A _Daniel Constantin Mayer_, May 23 2014

%E More terms from _Jens Kruse Andersen_, Jun 18 2014