login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001842
Expansion of Sum_{n>=0} x^(4*n+3)/(1 - x^(4*n+3)).
20
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 0, 2, 1, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 2, 2, 1, 2, 0, 1, 2, 0, 1, 3, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 3, 1, 2, 2, 1, 0, 2, 0, 1, 2, 0, 1
OFFSET
0,16
COMMENTS
Number of divisors of n of the form 4*k+3. - Reinhard Zumkeller, Apr 18 2006
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(A072437(n)) = 0. - Benoit Cloitre, Apr 24 2003
a(n) = A001227(n) - A001826(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 11 2019
a(n) = Sum_{d|n} (binomial(d,3) mod 2). - Ridouane Oudra, Nov 19 2019
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (1 - gamma)/4 = A256846 - (1 - A001620)/4 = -0.180804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MAPLE
with(numtheory): seq(add(binomial(d, 3) mod 2, d in divisors(n)), n=0..100); # Ridouane Oudra, Nov 19 2019
MATHEMATICA
Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 4] == 3 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
a[n_] := DivisorSum[n, 1 &, Mod[#, 4] == 3 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
PROG
(PARI) a(n) = if(n<1, 0, sumdiv(n, d, d%4 == 3)); \\ Amiram Eldar, Nov 25 2023
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved