|
|
A001842
|
|
Expansion of Sum_{n>=0} x^(4*n+3)/(1 - x^(4*n+3)).
|
|
20
|
|
|
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 0, 2, 1, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 2, 2, 1, 2, 0, 1, 2, 0, 1, 3, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 3, 1, 2, 2, 1, 0, 2, 0, 1, 2, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,16
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (1 - gamma)/4 = A256846 - (1 - A001620)/4 = -0.180804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
|
|
MAPLE
|
with(numtheory): seq(add(binomial(d, 3) mod 2, d in divisors(n)), n=0..100); # Ridouane Oudra, Nov 19 2019
|
|
MATHEMATICA
|
Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 4] == 3 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
a[n_] := DivisorSum[n, 1 &, Mod[#, 4] == 3 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
|
|
PROG
|
(PARI) a(n) = if(n<1, 0, sumdiv(n, d, d%4 == 3)); \\ Amiram Eldar, Nov 25 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|