login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001842 Expansion of Sum_{n>=0} x^(4*n+3)/(1 - x^(4*n+3)). 20
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 0, 2, 1, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 2, 2, 1, 2, 0, 1, 2, 0, 1, 3, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 3, 1, 2, 2, 1, 0, 2, 0, 1, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,16
COMMENTS
Number of divisors of n of the form 4*k+3. - Reinhard Zumkeller, Apr 18 2006
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(A072437(n)) = 0. - Benoit Cloitre, Apr 24 2003
a(n) = A001227(n) - A001826(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 11 2019
a(n) = Sum_{d|n} (binomial(d,3) mod 2). - Ridouane Oudra, Nov 19 2019
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (1 - gamma)/4 = A256846 - (1 - A001620)/4 = -0.180804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MAPLE
with(numtheory): seq(add(binomial(d, 3) mod 2, d in divisors(n)), n=0..100); # Ridouane Oudra, Nov 19 2019
MATHEMATICA
Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 4] == 3 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
a[n_] := DivisorSum[n, 1 &, Mod[#, 4] == 3 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
PROG
(PARI) a(n) = if(n<1, 0, sumdiv(n, d, d%4 == 3)); \\ Amiram Eldar, Nov 25 2023
CROSSREFS
Sequence in context: A325334 A280287 A147696 * A216654 A364014 A326016
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 11:57 EST 2023. Contains 367560 sequences. (Running on oeis4.)