login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001841 Related to Zarankiewicz's problem.
(Formerly M2460 N0977)
1
3, 5, 10, 14, 21, 26, 36, 43, 55, 64, 78, 88, 105, 117, 136, 150, 171, 186, 210, 227, 253, 272, 300, 320, 351, 373, 406, 430, 465, 490, 528, 555, 595, 624, 666, 696, 741 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Definition appears to be: a(n) is the maximum number of triangles in K_n, where each edge may be used 3 times. - Charles R Greathouse IV, Jul 06 2017

REFERENCES

R. K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

John Cerkan, Table of n, a(n) for n = 3..10000

R. K. Guy, A problem of Zarankiewicz, Research Paper No. 12, Dept. of Math., Univ. Calgary, Jan. 1967. See p. 9 column t(3,m). [Annotated and scanned copy, with permission]

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

MAPLE

A001841:=-(2*z**4+z**5+2*z**2+2*z**3+2*z+3)/(z**2-z+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation

CROSSREFS

Sequence in context: A310018 A048214 A195094 * A266793 A176222 A008610

Adjacent sequences:  A001838 A001839 A001840 * A001842 A001843 A001844

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 08:17 EST 2018. Contains 317275 sequences. (Running on oeis4.)