OFFSET
3,1
COMMENTS
Definition appears to be: a(n) is the maximum number of triangles in K_n, where each edge may be used 3 times. - Charles R Greathouse IV, Jul 06 2017
REFERENCES
R. K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Cerkan, Table of n, a(n) for n = 3..10000
R. K. Guy, A problem of Zarankiewicz, Research Paper No. 12, Dept. of Math., Univ. Calgary, Jan. 1967. See p. 9 column t(3,m). [Annotated and scanned copy, with permission]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
MAPLE
A001841:=-(2*z**4+z**5+2*z**2+2*z**3+2*z+3)/(z**2-z+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved