The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A365763 a(n) = number of polynomials of degree 4 in a regular Groebner basis (graded reverse lexicographic order) of n quadratic polynomials in n variables. 0
 0, 0, 1, 3, 5, 10, 14, 22, 29, 39, 50, 60, 76, 91, 105, 126, 146, 165, 189, 215, 240, 264, 297, 329, 360, 390, 430, 469, 507, 544, 588, 635, 681, 726, 770, 826, 881, 935 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Table of n, a(n) for n=1..38. EXAMPLE For n=3, the leading monomial is x3^4, so a(3) = 1. For n=4, the 3 leading monomials are x1x4^3, x2x4^3, x3x4^3, so a(4) = 3. PROG (Magma) function a(n); F:=GF(251); P<[x]>:=PolynomialRing(F, n, "grevlex"); M2:=[ &*[P| x[i] : i in s] : s in Multisets({1..n}, 2) ]; A:=[ &+[Random(F)*m : m in M2] : i in [1..n]]; G:=GroebnerBasis(A, 4); return #[ g : g in G | TotalDegree(g) eq 4 ]; end function; CROSSREFS Cf. A000027 (degree 2), A006463 (degree 3). Sequence in context: A001841 A266793 A176222 * A008610 A281688 A078411 Adjacent sequences: A365760 A365761 A365762 * A365764 A365765 A365766 KEYWORD nonn,more AUTHOR Gilles Macario-Rat, Sep 18 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 15:55 EDT 2024. Contains 375976 sequences. (Running on oeis4.)