|
|
A365763
|
|
a(n) = number of polynomials of degree 4 in a regular Groebner basis (graded reverse lexicographic order) of n quadratic polynomials in n variables.
|
|
0
|
|
|
0, 0, 1, 3, 5, 10, 14, 22, 29, 39, 50, 60, 76, 91, 105, 126, 146, 165, 189, 215, 240, 264, 297, 329, 360, 390, 430, 469, 507, 544, 588, 635, 681, 726, 770, 826, 881, 935
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
LINKS
|
|
|
EXAMPLE
|
For n=3, the leading monomial is x3^4, so a(3) = 1.
For n=4, the 3 leading monomials are x1x4^3, x2x4^3, x3x4^3, so a(4) = 3.
|
|
PROG
|
(Magma)
function a(n);
F:=GF(251);
P<[x]>:=PolynomialRing(F, n, "grevlex");
M2:=[ &*[P| x[i] : i in s] : s in Multisets({1..n}, 2) ];
A:=[ &+[Random(F)*m : m in M2] : i in [1..n]];
G:=GroebnerBasis(A, 4);
return #[ g : g in G | TotalDegree(g) eq 4 ];
end function;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|