login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176222 a(n) = (n^2 - 3*n + 1 + (-1)^n)/2. 9
0, 3, 5, 10, 14, 21, 27, 36, 44, 55, 65, 78, 90, 105, 119, 136, 152, 171, 189, 210, 230, 253, 275, 300, 324, 351, 377, 406, 434, 465, 495, 528, 560, 595, 629, 666, 702, 741, 779, 820, 860, 903, 945, 990, 1034, 1081, 1127, 1176, 1224, 1275, 1325, 1378, 1430 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

Let I = I_n be the n X n identity matrix and P = P_n be the incidence matrix of the cycle (1,2,3,...,n).

Let T = P^(-1)+I+P.

  11000...01

  11100....0

  01110.....

  00111.....

  ..........

  00.....111

  10.....011

Then a(n) is the number of (0,1) n X n matrices A <= T (i.e., an element of A can be 1 only if T has a 1 at this place) having exactly two 1's in every row and column with per(A) = 4.

a(n) is the maximum number m such that m white kings and m black kings can coexist on an n+1 X n+1 chessboard without attacking each other. - Aaron Khan, Jul 05 2022

REFERENCES

V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3 (1992), 15-19.

LINKS

G. C. Greubel, Table of n, a(n) for n = 3..1000

Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012.

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = (n - t(n))*(n - 3 + t(n))/2, where t(n) = 1-(n mod 2).

G.f.: x^4*(3-x)/( (1+x)*(1-x)^3 ). - R. J. Mathar, Mar 06 2011

From Bruno Berselli, Sep 13 2011: (Start)

a(n) + a(n+1) = A005563(n-2).

a(-n) = A084265(n). (End)

a(n) = 1 -2*n +floor(n/2) +floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013

From Wesley Ivan Hurt, May 25 2015: (Start)

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.

a(n) = Sum_{i=(-1)^n..n-2} i. (End)

a(n) = A174239(n-2) * A174239(n-1). - Paul Curtz, Jul 17 2017

With offset 0, this is ceiling(n/2)*(2*floor(n/2)+3). - N. J. A. Sloane, Jan 16 2020

E.g.f.: (1/2)*((1-x)*exp(x/2) - exp(-x/2))^2. - G. C. Greubel, Mar 22 2022

EXAMPLE

For n=5 the reference matrix is:

  11001

  11100

  01110

  00111

  10011

There are 2^(3*n) = 32768 0-1 matrices obtained from removing one or more 1's in it.

There are 305 such matrices with permanent 4 and there are 13 such matrices with exactly two 1's in every column and every row.

There are 5 matrices having both properties. One of them is:

  10001

  01100

  01100

  00011

  10010

From Aaron Khan, Jul 05 2022: (Start)

Examples of the sequence when used for kings on a chessboard:

.

A solution illustrating a(2)=3:

  +-------+

  | B B B |

  | . . . |

  | W W W |

  +-------+

.

A solution illustrating a(3)=5:

  +---------+

  | B B B B |

  | B . . . |

  | . . . W |

  | W W W W |

  +---------+

(End)

MAPLE

A176222:=n->(n^2-3*n+1+(-1)^n)/2: seq(A176222(n), n=3..100); # Wesley Ivan Hurt, May 25 2015

MATHEMATICA

Table[(n^2 - 3*n + 1 + (-1)^n)/2, {n, 3, 100}] (* or *) CoefficientList[Series[x (x - 3)/((1 + x)*(x - 1)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, May 25 2015 *)

PROG

(Magma) [(n^2-3*n+1+(-1)^n)/2: n in [3..100]]; // Vincenzo Librandi, Mar 24 2011

(PARI) a(n)=(n^2-3*n+1+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 16 2015

(Sage) [n*(n-3)/2 + ((n+1)%2) for n in (3..60)] # G. C. Greubel, Mar 22 2022

CROSSREFS

Cf. A000211, A052928, A128209, A250000 (queens on a chessboard), A002620 (rooks on a chessboard), A355509 (knights on a chessboard).

Sequence in context: A308805 A001841 A266793 * A008610 A281688 A078411

Adjacent sequences:  A176219 A176220 A176221 * A176223 A176224 A176225

KEYWORD

nonn,easy

AUTHOR

Vladimir Shevelev, Apr 12 2010

EXTENSIONS

Matrix class definition checked, edited and illustrated by Olivier Gérard, Mar 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 04:27 EDT 2022. Contains 356029 sequences. (Running on oeis4.)