login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176225
A symmetrical triangle sequence: T(n, k) = q^k + q^(n-k) - q^n, with q=3.
4
1, 1, 1, 1, -3, 1, 1, -15, -15, 1, 1, -51, -63, -51, 1, 1, -159, -207, -207, -159, 1, 1, -483, -639, -675, -639, -483, 1, 1, -1455, -1935, -2079, -2079, -1935, -1455, 1, 1, -4371, -5823, -6291, -6399, -6291, -5823, -4371, 1, 1, -13119, -17487, -18927, -19359, -19359, -18927, -17487, -13119, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -1, -28, -163, -730, -2917, -10936, -39367, -137782, -472393, ...}.
FORMULA
T(n,k) = q^k + q^(n-k) - q^n, with q = 3.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -3, 1;
1, -15, -15, 1;
1, -51, -63, -51, 1;
1, -159, -207, -207, -159, 1;
1, -483, -639, -675, -639, -483, 1;
1, -1455, -1935, -2079, -2079, -1935, -1455, 1;
1, -4371, -5823, -6291, -6399, -6291, -5823, -4371, 1;
MAPLE
q:=3; seq(seq(q^k +q^(n-k) -q^n, k=0..n), n=0..12); # G. C. Greubel, Nov 23 2019
MATHEMATICA
T[n_, k_, q_]:= q^k +q^(n-k) -q^n; Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Nov 23 2019 *)
PROG
(PARI) T(n, k, q) = my(q=3); q^k +q^(n-k) -q^n; \\ G. C. Greubel, Nov 23 2019
(Magma) q:=3; [q^k +q^(n-k) -q^n : k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 23 2019
(Sage) q=3; [[q^k +q^(n-k) -q^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 23 2019
(GAP) q:=3;; Flat(List([0..12], n-> List([0..n], k-> q^k +q^(n-k) -q^n ))); # G. C. Greubel, Nov 23 2019
CROSSREFS
Cf. A176224 (q=2), this sequence (q=3), A176226 (q=5), A176227 (q=4).
Sequence in context: A110112 A370691 A326800 * A173917 A174410 A156690
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 12 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 23 2019
STATUS
approved