login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110112
Square array of numbers associated to the recurrences b(k) = b(k-1) + n*b(k-2); array T(n,k), read by descending antidiagonals, for n, k >= 0.
2
1, 1, 1, 1, 3, 1, 1, 15, 5, 1, 1, 60, 55, 7, 1, 1, 260, 385, 133, 9, 1, 1, 1092, 3311, 1330, 261, 11, 1, 1, 4641, 25585, 18430, 3393, 451, 13, 1, 1, 19635, 208335, 210490, 68237, 7216, 715, 15, 1, 1, 83215, 1652145, 2673223, 1037673, 197456, 13585, 1065, 17, 1, 1
OFFSET
0,5
COMMENTS
Rows include A001655, (-1)^n*A015266(n+3), A110111.
FORMULA
T(n, k) = a(n, k+1) * a(n, k+2) * a(n, k+3)/(n+1), where a(n, k) is the solution to a(n, k) = a(n, k-1) + n*a(n, k-2) for k >= 2 with a(n, 0) = 0 and a(n, 1) = 1 for all n >= 0.
Row n has g.f. 1/((1 + n*x - n^3*x^2) * (1 - (3*n + 1)*x - n^3*x^2)).
EXAMPLE
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 15, 60, 260, 1092, 4641, 19635, ...
1, 5, 55, 385, 3311, 25585, 208335, 1652145, ...
1, 7, 133, 1330, 18430, 210490, 2673223, 31940881, ...
1, 9, 261, 3393, 68237, 1037673, 18598293, 300963537, ...
1, 11, 451, 7216, 197456, 3761296, 89565861, 1842200151, ...
...
MAPLE
a := proc(n, k) local v; option remember; if k = 0 and 0 <= n then v := 0; end if; if k = 1 and 0 <= n then v := 1; end if; if 2 <= k and 0 <= n then v := a(n, k - 1) + n*a(n, k - 2); end if; v; end proc;
T := proc(n, k) a(n, k + 1)*a(n, k + 2)*a(n, k + 3)/(n + 1); end proc;
seq(seq(T(k, n-k), k=0..n), n=0..10); # Petros Hadjicostas, Dec 26 2019
CROSSREFS
Cf. A083856.
Sequence in context: A072285 A144269 A144270 * A370691 A326800 A176225
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 12 2005
STATUS
approved