Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 27 2019 11:30:45
%S 1,1,1,1,3,1,1,15,5,1,1,60,55,7,1,1,260,385,133,9,1,1,1092,3311,1330,
%T 261,11,1,1,4641,25585,18430,3393,451,13,1,1,19635,208335,210490,
%U 68237,7216,715,15,1,1,83215,1652145,2673223,1037673,197456,13585,1065,17,1,1
%N Square array of numbers associated to the recurrences b(k) = b(k-1) + n*b(k-2); array T(n,k), read by descending antidiagonals, for n, k >= 0.
%C Rows include A001655, (-1)^n*A015266(n+3), A110111.
%F T(n, k) = a(n, k+1) * a(n, k+2) * a(n, k+3)/(n+1), where a(n, k) is the solution to a(n, k) = a(n, k-1) + n*a(n, k-2) for k >= 2 with a(n, 0) = 0 and a(n, 1) = 1 for all n >= 0.
%F Row n has g.f. 1/((1 + n*x - n^3*x^2) * (1 - (3*n + 1)*x - n^3*x^2)).
%e Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 3, 15, 60, 260, 1092, 4641, 19635, ...
%e 1, 5, 55, 385, 3311, 25585, 208335, 1652145, ...
%e 1, 7, 133, 1330, 18430, 210490, 2673223, 31940881, ...
%e 1, 9, 261, 3393, 68237, 1037673, 18598293, 300963537, ...
%e 1, 11, 451, 7216, 197456, 3761296, 89565861, 1842200151, ...
%e ...
%p a := proc(n, k) local v; option remember; if k = 0 and 0 <= n then v := 0; end if; if k = 1 and 0 <= n then v := 1; end if; if 2 <= k and 0 <= n then v := a(n, k - 1) + n*a(n, k - 2); end if; v; end proc;
%p T := proc(n, k) a(n, k + 1)*a(n, k + 2)*a(n, k + 3)/(n + 1); end proc;
%p seq(seq(T(k,n-k), k=0..n), n=0..10); # _Petros Hadjicostas_, Dec 26 2019
%Y Cf. A083856.
%K easy,nonn,tabl
%O 0,5
%A _Paul Barry_, Jul 12 2005