login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072285
Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).
2
1, 1, 1, 1, 3, 1, 1, 15, 2, 1, 1, 35, 3, 5, 1, 1, 315, 4, 35, 3, 1, 1, 693, 5, 105, 6, 7, 1, 1, 3003, 6, 1155, 10, 63, 4, 1, 1, 6435, 7, 3003, 15, 231, 10, 9, 1, 1, 109395, 8, 15015, 21, 3003, 20, 99, 5, 1, 1, 230945, 9, 36465, 28, 9009, 35, 429, 15, 11, 1
OFFSET
0,5
FORMULA
a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).
MATHEMATICA
a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Numerator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
PROG
(PARI) a(n, m) = binomial(n-m/2, n-m);
for(n=0, 10, for(m=0, n, print1(numerator(a(n, m)), ", "))) \\ G. C. Greubel, Aug 26 2019
(Sage) [[numerator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019
CROSSREFS
Sequence in context: A203002 A073483 A006956 * A144269 A144270 A110112
KEYWORD
nonn,easy,frac,tabl
AUTHOR
Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002
STATUS
approved