login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).
2

%I #11 Aug 27 2019 02:57:07

%S 1,1,1,1,3,1,1,15,2,1,1,35,3,5,1,1,315,4,35,3,1,1,693,5,105,6,7,1,1,

%T 3003,6,1155,10,63,4,1,1,6435,7,3003,15,231,10,9,1,1,109395,8,15015,

%U 21,3003,20,99,5,1,1,230945,9,36465,28,9009,35,429,15,11,1

%N Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).

%H G. C. Greubel, <a href="/A072285/b072285.txt">Rows n = 0..100 of triangle, flattened</a>

%F a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).

%t a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Numerator[a[n, m]], {n, 0, 11}, {m, 0, n}]]

%o (PARI) a(n,m) = binomial(n-m/2, n-m);

%o for(n=0,10, for(m=0,n, print1(numerator(a(n,m)), ", "))) \\ _G. C. Greubel_, Aug 26 2019

%o (Sage) [[numerator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # _G. C. Greubel_, Aug 26 2019

%Y Cf. A072286, A071922.

%K nonn,easy,frac,tabl

%O 0,5

%A Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002