login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083856
Square array T(n,k) of generalized Fibonacci numbers, read by antidiagonals upwards (n, k >= 0).
8
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 5, 5, 1, 0, 1, 1, 5, 7, 11, 8, 1, 0, 1, 1, 6, 9, 19, 21, 13, 1, 0, 1, 1, 7, 11, 29, 40, 43, 21, 1, 0, 1, 1, 8, 13, 41, 65, 97, 85, 34, 1, 0, 1, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1
OFFSET
0,14
COMMENTS
Row n >= 0 of the array gives the solution to the recurrence b(k) = b(k-1) + n*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1.
LINKS
A. G. Shannon and J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, 21(2) (2015), 35-42.
FORMULA
T(n, k) = (((1 + sqrt(4*n + 1))/2)^k - ((1 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1). [corrected by Michel Marcus, Jun 25 2018]
From Thomas Baruchel, Jun 25 2018: (Start)
The g.f. for row n >= 0 is x/(1 - x - n*x^2).
The g.f. for column k >= 1 is g(k,x) = 1/(1-x) + Sum_{m = 1..floor((k-1)/2)} (1 - x)^(-1 - m) * binomial(k - 1 - m, m) * Sum_{i = 0..m} x^i * Sum_{j = 0..i} (-1)^j * (i - j)^m * binomial(1 + m, j).
The g.f. for column k >= 1 is also g(k,x) = 1 + Sum_{m = 1..floor((k+1)/2)} ((1 - x)^(-m) * binomial(k-m, m-1) * Sum_{j = 0..m} (-1)^j * binomial(m, j) * x^m * Phi(x, -m+1, -j+m)) + Sum_{s = 0..floor((k-1)/2)} binomial(k-s-1, s) * PolyLog(-s, x), where Phi is the Lerch transcendent function. (End)
T(n,k) = Sum_{i = 0..k} (-1)^(k+i) * binomial(k,i) * A083857(n,i). - Petros Hadjicostas, Dec 24 2019
EXAMPLE
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A057427]
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... [A000045]
0, 1, 1, 3, 5, 11, 21, 43, 85, 171, ... [A001045]
0, 1, 1, 4, 7, 19, 40, 97, 217, 508, ... [A006130]
0, 1, 1, 5, 9, 29, 65, 181, 441, 1165, ... [A006131]
0, 1, 1, 6, 11, 41, 96, 301, 781, 2286, ... [A015440]
0, 1, 1, 7, 13, 55, 133, 463, 1261, 4039, ... [A015441]
0, 1, 1, 8, 15, 71, 176, 673, 1905, 6616, ... [A015442]
0, 1, 1, 9, 17, 89, 225, 937, 2737, 10233, ... [A015443]
0, 1, 1, 10, 19, 109, 280, 1261, 3781, 15130, ... [A015445]
...
MAPLE
A083856_row := proc(r, n) local R; R := proc(n) option remember;
if n<=1 then n else R(n-1)+r*R(n-2) fi end: R(n) end:
for r from 0 to 9 do seq(A083856_row(r, n), n=0..9) od; # Peter Luschny, Mar 06 2017
MATHEMATICA
T[_, 0] = 0; T[_, 1|2] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2];
Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
PROG
(Julia)
function generalized_fibonacci(r, n)
F = BigInt[1 r; 1 0]
Fn = F^n
Fn[2, 1]
end
for r in 0:6 println([generalized_fibonacci(r, n) for n in 0:9]) end # Peter Luschny, Mar 06 2017
CROSSREFS
Rows include A057427 (n=0), A000045 (n=1), A001045 (n=2), A006130 (n=3), A006131 (n=4), A015440 (n=5), A015441 (n=6), A015442 (n=7), A015443 (n=8), A015445 (n=9).
Columns include A000012 (k=1,2), A000027 (k=3), A005408 (k=4), A028387 (k=5), A000567 (k=6), A106734 (k=7).
Cf. A083857 (binomial transform), A083859 (main diagonal), A083860 (first subdiagonal), A083861 (second binomial transform), A110112, A110113 (diagonal sums), A193376 (transposed variant), A172237 (transposed variant).
Sequence in context: A263191 A192517 A309896 * A081718 A290353 A263857
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, May 06 2003
EXTENSIONS
Various sections edited by Petros Hadjicostas, Dec 24 2019
STATUS
approved