login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083858 Expansion of x/(1 - 3*x - 6*x^2). 17
0, 1, 3, 15, 63, 279, 1215, 5319, 23247, 101655, 444447, 1943271, 8496495, 37149111, 162426303, 710173575, 3105078543, 13576277079, 59359302495, 259535569959, 1134762524847, 4961500994295, 21693078131967, 94848240361671 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of A015443. A row of array A083857.

Pisano period lengths: 1, 1, 1, 1, 12, 1, 8, 1, 1, 12, 110, 1, 168, 8, 12, 2, 16, 1, 360, 12, ... - R. J. Mathar, Aug 10 2012

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,6).

FORMULA

a(n) = 3*a(n-1) + 6*a(n-2), a(0)=0, a(1)=1.

a(n) = (3*sqrt(33)/2 + 21/2)^(n/2)/sqrt(33) - (21/2 - 3*sqrt(33)/2)^(n/2)*(-1)^n/sqrt(33).

G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013

a(n) = B(n, k + 2^(n-1)) - B(n,k) where B(n,k) is formed by the family of recursions b(n) = 3*(b(n-1) + b(n-2))/2, with b(0) = 1 and b(1) = k, as explained further in A249861. - Richard R. Forberg, Nov 04 2014

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 2}, {1, -4}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)

LinearRecurrence[{3, 6}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)

PROG

(Sage) [lucas_number1(n, 3, -6) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018

CROSSREFS

Cf. A015523, A015524.

Sequence in context: A024036 A111303 A118339 * A151241 A080948 A098102

Adjacent sequences:  A083855 A083856 A083857 * A083859 A083860 A083861

KEYWORD

easy,nonn,changed

AUTHOR

Paul Barry, May 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)