Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #77 Dec 27 2019 11:16:57
%S 0,0,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,3,3,1,0,1,1,4,5,5,1,0,1,1,5,7,11,
%T 8,1,0,1,1,6,9,19,21,13,1,0,1,1,7,11,29,40,43,21,1,0,1,1,8,13,41,65,
%U 97,85,34,1,0,1,1,9,15,55,96,181,217,171,55,1
%N Square array T(n,k) of generalized Fibonacci numbers, read by antidiagonals upwards (n, k >= 0).
%C Row n >= 0 of the array gives the solution to the recurrence b(k) = b(k-1) + n*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1.
%H A. G. Shannon and J. V. Leyendekkers, <a href="http://nntdm.net/volume-21-2015/number-2/35-42/">The Golden Ratio family and the Binet equation</a>, Notes on Number Theory and Discrete Mathematics, 21(2) (2015), 35-42.
%F T(n, k) = (((1 + sqrt(4*n + 1))/2)^k - ((1 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1). [corrected by _Michel Marcus_, Jun 25 2018]
%F From _Thomas Baruchel_, Jun 25 2018: (Start)
%F The g.f. for row n >= 0 is x/(1 - x - n*x^2).
%F The g.f. for column k >= 1 is g(k,x) = 1/(1-x) + Sum_{m = 1..floor((k-1)/2)} (1 - x)^(-1 - m) * binomial(k - 1 - m, m) * Sum_{i = 0..m} x^i * Sum_{j = 0..i} (-1)^j * (i - j)^m * binomial(1 + m, j).
%F The g.f. for column k >= 1 is also g(k,x) = 1 + Sum_{m = 1..floor((k+1)/2)} ((1 - x)^(-m) * binomial(k-m, m-1) * Sum_{j = 0..m} (-1)^j * binomial(m, j) * x^m * Phi(x, -m+1, -j+m)) + Sum_{s = 0..floor((k-1)/2)} binomial(k-s-1, s) * PolyLog(-s, x), where Phi is the Lerch transcendent function. (End)
%F T(n,k) = Sum_{i = 0..k} (-1)^(k+i) * binomial(k,i) * A083857(n,i). - _Petros Hadjicostas_, Dec 24 2019
%e Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
%e 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A057427]
%e 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... [A000045]
%e 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, ... [A001045]
%e 0, 1, 1, 4, 7, 19, 40, 97, 217, 508, ... [A006130]
%e 0, 1, 1, 5, 9, 29, 65, 181, 441, 1165, ... [A006131]
%e 0, 1, 1, 6, 11, 41, 96, 301, 781, 2286, ... [A015440]
%e 0, 1, 1, 7, 13, 55, 133, 463, 1261, 4039, ... [A015441]
%e 0, 1, 1, 8, 15, 71, 176, 673, 1905, 6616, ... [A015442]
%e 0, 1, 1, 9, 17, 89, 225, 937, 2737, 10233, ... [A015443]
%e 0, 1, 1, 10, 19, 109, 280, 1261, 3781, 15130, ... [A015445]
%e ...
%p A083856_row := proc(r, n) local R; R := proc(n) option remember;
%p if n<=1 then n else R(n-1)+r*R(n-2) fi end: R(n) end:
%p for r from 0 to 9 do seq(A083856_row(r, n), n=0..9) od; # _Peter Luschny_, Mar 06 2017
%t T[_, 0] = 0; T[_, 1|2] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2];
%t Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *)
%o (Julia)
%o function generalized_fibonacci(r, n)
%o F = BigInt[1 r; 1 0]
%o Fn = F^n
%o Fn[2, 1]
%o end
%o for r in 0:6 println([generalized_fibonacci(r, n) for n in 0:9]) end # _Peter Luschny_, Mar 06 2017
%Y Rows include A057427 (n=0), A000045 (n=1), A001045 (n=2), A006130 (n=3), A006131 (n=4), A015440 (n=5), A015441 (n=6), A015442 (n=7), A015443 (n=8), A015445 (n=9).
%Y Columns include A000012 (k=1,2), A000027 (k=3), A005408 (k=4), A028387 (k=5), A000567 (k=6), A106734 (k=7).
%Y Cf. A083857 (binomial transform), A083859 (main diagonal), A083860 (first subdiagonal), A083861 (second binomial transform), A110112, A110113 (diagonal sums), A193376 (transposed variant), A172237 (transposed variant).
%K nonn,tabl,easy
%O 0,14
%A _Paul Barry_, May 06 2003
%E Various sections edited by _Petros Hadjicostas_, Dec 24 2019