login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370691
Square array read by upward antidiagonals: T(n, k) = denominator( 2*k!*(-2)^k*Sum_{m=1..n}( 1/(2*m-1)^(k+1) ) ).
1
1, 1, 1, 3, 1, 1, 15, 9, 1, 1, 105, 225, 27, 1, 765765, 405810405, 91398648466125, 48049812916875, 1033788065625, 89339709375, 3796875, 729, 1, 1, 1, 315, 11025, 3375, 27, 1, 1, 3465, 99225, 1157625, 16875, 81, 1, 1, 45045, 12006225, 31255875, 40516875, 253125, 243, 1, 1, 45045, 2029052025
OFFSET
0,4
FORMULA
T(n, k) = denominator( polygamma(k, n + 1/2) - polygamma(k, 1/2) ).
T(n, k) = denominator( k!*(-1)^(k+1)*(zeta((k+1), 1/2 + n) - zeta((k+1), 1/2)) ), where zeta is the Hurwitz zeta function.
T(n, 0) = A025547(n).
T(n, 1) = A128492(n).
Conjectured: T(n, 2) = A128507(n).
EXAMPLE
array begins:
1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1
3, 9, 27, 27, 81, 243
15, 225, 3375, 16875, 253125, 759375
105, 11025, 1157625, 40516875, 4254271875, 89339709375
315, 99225, 31255875, 3281866875, 1033788065625, 65128648134375
3465, 12006225, 41601569625, 48049812916875, 166492601756971875, 115379373017581509375
MAPLE
A := (n, k) -> Psi(k, n + 1/2) - Psi(k, 1/2):
seq(lprint(seq(denom(A(n, k)), k = 0..4)), n=0..6);
PROG
(PARI) T(n, k) = denominator(sum(m=1, n, 1/(2*m-1)^(k+1))*k!*(-2)^k*2)
CROSSREFS
Cf. A370692 (numerators),
Cf. A025547 (first column), A128492 (second column).
Cf. A128507.
Cf. A255008 (denominators polygamma(n, 1) - polygamma(n, k)).
Cf. A255009 (numerators polygamma(n, 1) - polygamma(n, k)).
Sequence in context: A144269 A144270 A110112 * A326800 A176225 A173917
KEYWORD
nonn,frac,tabl
AUTHOR
Thomas Scheuerle, Apr 21 2024
STATUS
approved