OFFSET
0,6
LINKS
Eric Weisstein's MathWorld, Harmonic Number.
Eric Weisstein's MathWorld, Polygamma Function.
Wikipedia, Polygamma Function.
FORMULA
Fraction giving T(n,k) = polygamma(n, 1) - polygamma(n, k) = (-1)^(n+1)*n! * sum_{j=1..k-1} 1/j^(n+1) = (-1)^(n+1)*n!*H(k-1, n+1), where H(n,r) gives the n-th harmonic number of order r.
EXAMPLE
Array of fractions begin:
0, -1, -3/2, -11/6, -25/12, -137/60, ...
0, 1, 5/4, 49/36, 205/144, 5269/3600, ...
0, -2, -9/4, -251/108, -2035/864, -256103/108000, ...
0, 6, 51/8, 1393/216, 22369/3456, 14001361/2160000, ...
0, -24, -99/4, -8051/324, -257875/10368, -806108207/32400000, ...
0, 120, 975/8, 237245/1944, 15187325/124416, 47463376609/388800000, ...
...
MATHEMATICA
T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Numerator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Feb 12 2015
STATUS
approved