The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001838 Numbers n such that phi(n+2) = phi(n) + 2. (Formerly M2397 N0951) 13
 3, 5, 6, 11, 12, 14, 17, 18, 20, 29, 41, 44, 59, 62, 71, 92, 101, 107, 116, 137, 149, 164, 179, 191, 197, 212, 227, 239, 254, 269, 281, 311, 332, 347, 356, 419, 431, 452, 461, 521, 524, 569, 599, 617, 641, 659, 692, 716, 764, 809, 821, 827, 857, 881, 932, 956 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If p and p+2 are primes then p is a solution. If p and 2p+1 are both odd primes then 4p is a solution. Several numbers of the form 2^i-2 are solutions (see cross referenced sequences). Although 18 is a solution, it is not of any of these forms. Twice Mersenne primes (cf. A000668) are also solutions. - Vladeta Jovovic, Feb 14 2002 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840. D. M. Burton, Elementary Number Theory, section 7-2. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence as N0951, although there are errors, probably caused by errors in the original source). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. S. W. Graham, J. J. Holt, and C. Pomerance, On the solutions to phi(n) = phi(n+k), Number Theory in Progress, K. Gyory, H. Iwaniec, and J. Urbanowicz, eds., vol. 2, de Gruyter, Berlin and New York, 1999, pp. 867-882. L. Moser, Some equations involving Euler's totient function, Amer. Math. Monthly, 56 (1949), 22-23. EXAMPLE phi(18)+2=8=phi(18+2), so 18 is in the sequence. MATHEMATICA Select[Range@1000, EulerPhi@(# + 2)== EulerPhi[#] + 2 &] (* Vincenzo Librandi, Sep 11 2015 *) Position[Partition[EulerPhi[Range[1000]], 3, 1], _?(#[[1]]+2 == #[[3]]&), 1, Heads->False]//Flatten (* Harvey P. Dale, Oct 04 2017 *) PROG (Haskell) import Data.List (elemIndices) a001838 n = a001838_list !! (n-1) a001838_list = map (+ 1) \$ elemIndices 2 \$    zipWith (-) (drop 2 a000010_list) a000010_list -- Reinhard Zumkeller, Feb 21 2012 (PARI) isok(n) = eulerphi(n+2) == eulerphi(n) + 2; \\ Michel Marcus, Sep 11 2015 (MAGMA) [n: n in [1..1000] | EulerPhi(n+2) eq EulerPhi(n)+2]; // Vincenzo Librandi, Sep 11 2015 CROSSREFS Cf. A050472, A050473, etc. Essentially the same as A056853. Sequence in context: A335403 A327433 A167522 * A285785 A080759 A145714 Adjacent sequences:  A001835 A001836 A001837 * A001839 A001840 A001841 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from Jud McCranie, Dec 24 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:04 EDT 2021. Contains 343156 sequences. (Running on oeis4.)