login
A083914
Number of divisors of n that are congruent to 4 modulo 10.
11
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0
OFFSET
1,24
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,10) - (1 - gamma)/10 = -0.0163984..., gamma(4,10) = -(psi(2/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023
MATHEMATICA
Table[Count[Divisors[n], _?(Mod[#, 10]==4&)], {n, 110}] (* Harvey P. Dale, Dec 09 2014 *)
a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 4 &]; Array[a, 100] (* Amiram Eldar, Dec 30 2023 *)
PROG
(PARI) A083914(n) = sumdiv(n, d, (4==(d%10))); \\ Antti Karttunen, Nov 07 2018
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 08 2003
STATUS
approved