login
A198145
Decimal expansion of greatest x having x^2-4x=-3*cos(x).
3
4, 2, 8, 8, 0, 4, 7, 6, 2, 3, 7, 0, 3, 1, 3, 6, 5, 7, 8, 7, 4, 5, 8, 0, 0, 0, 2, 7, 8, 7, 8, 9, 3, 6, 9, 7, 4, 6, 5, 9, 5, 3, 7, 8, 2, 3, 7, 0, 2, 3, 6, 5, 0, 1, 5, 5, 8, 5, 6, 6, 2, 1, 8, 9, 2, 2, 3, 3, 0, 1, 5, 6, 0, 6, 6, 1, 5, 1, 5, 5, 9, 1, 5, 4, 8, 6, 9, 7, 8, 7, 5, 4, 5, 1, 9, 7, 5, 4, 1
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.69658584777906580198659243463275435885...
greatest x: 4.2880476237031365787458000278789369746...
MATHEMATICA
a = 1; b = -4; c = -3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 5}]
r1 = x /. FindRoot[f[x] == g[x], {x, 0.69, 0.70}, WorkingPrecision -> 110]
RealDigits[r1] (* A198144 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 4.28, 4.29}, WorkingPrecision -> 110]
RealDigits[r2] (* A198145 *)
CROSSREFS
Cf. A197737.
Sequence in context: A182848 A228834 A197016 * A143942 A265291 A195777
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved