OFFSET
0,2
COMMENTS
Equivalently, products of a member of A000079 and a member of A002110. - Matthew Vandermast, Nov 04 2008
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10186 (all terms a(n) <= A002110(54))
EXAMPLE
24 is a term because (bigomega(24),omega(24))=(4,2) and 24 is the smallest n for which (bigomega(n),omega(n))=(4,2).
MATHEMATICA
f[x_] := Block[{i, k, m, nn, p}, nn = Product[Prime[j], {j, x}]; Set[{k, i, p}, Range[0, 2]]; {1}~Join~Union@ Reap[Until[i > x, While[Set[m, 2^k*p] <= nn, Sow[m]; k++]; k = 0; i++; p *= Prime[i] ] ][[-1, 1]] ]; f[6] (* Michael De Vlieger, Oct 08 2024 *)
PROG
(PARI) c_max=65; b=vector(c_max); o=vector(c_max); n=1; v=[n]; c=1; first term = 1 b[1] && o[1] are bigomega(1) && omega(1) - already initialized to 0 above. c_max is the total number of terms sought (including 1). Code exits for-loop to try new n upon the first match of a previous pair. until(c==c_max, n++; for(m=1, c, if(bigomega(n)==b[m] && omega(n)==o[m], break, else, if last previous pair checked, save term, save new unique pair if(m==c, v=concat(v, n); c++; b[c]=bigomega(n); o[c]=omega(n))))); v
CROSSREFS
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, May 06 2002
STATUS
approved