login
A070175
The smallest representative of each (bigomega(n),omega(n)) pair.
23
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 48, 60, 64, 96, 120, 128, 192, 210, 240, 256, 384, 420, 480, 512, 768, 840, 960, 1024, 1536, 1680, 1920, 2048, 2310, 3072, 3360, 3840, 4096, 4620, 6144, 6720, 7680, 8192, 9240, 12288, 13440, 15360, 16384, 18480, 24576
OFFSET
0,2
COMMENTS
Equivalently, products of a member of A000079 and a member of A002110. - Matthew Vandermast, Nov 04 2008
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10186 (all terms a(n) <= A002110(54))
EXAMPLE
24 is a term because (bigomega(24),omega(24))=(4,2) and 24 is the smallest n for which (bigomega(n),omega(n))=(4,2).
MATHEMATICA
f[x_] := Block[{i, k, m, nn, p}, nn = Product[Prime[j], {j, x}]; Set[{k, i, p}, Range[0, 2]]; {1}~Join~Union@ Reap[Until[i > x, While[Set[m, 2^k*p] <= nn, Sow[m]; k++]; k = 0; i++; p *= Prime[i] ] ][[-1, 1]] ]; f[6] (* Michael De Vlieger, Oct 08 2024 *)
PROG
(PARI) c_max=65; b=vector(c_max); o=vector(c_max); n=1; v=[n]; c=1; first term = 1 b[1] && o[1] are bigomega(1) && omega(1) - already initialized to 0 above. c_max is the total number of terms sought (including 1). Code exits for-loop to try new n upon the first match of a previous pair. until(c==c_max, n++; for(m=1, c, if(bigomega(n)==b[m] && omega(n)==o[m], break, else, if last previous pair checked, save term, save new unique pair if(m==c, v=concat(v, n); c++; b[c]=bigomega(n); o[c]=omega(n))))); v
CROSSREFS
Cf. A001222 (bigomega(n)), A001221 (omega(n)).
Cf. A025487.
Sequence in context: A279537 A325238 A344385 * A096850 A250270 A062847
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, May 06 2002
STATUS
approved