OFFSET
1,2
COMMENTS
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = frequency depth of n, and the k-th part is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, given by red(n = p^i*...*q^j) = prime(i)*...*prime(j), i.e., the product of primes indexed by the prime exponents of n.
EXAMPLE
The sequence of terms together with their omega-sequences begins:
1:
2: 1
4: 2 1
6: 2 2 1
8: 3 1
12: 3 2 2 1
16: 4 1
24: 4 2 2 1
30: 3 3 1
32: 5 1
36: 4 2 1
48: 5 2 2 1
60: 4 3 2 2 1
64: 6 1
96: 6 2 2 1
120: 5 3 2 2 1
128: 7 1
192: 7 2 2 1
210: 4 4 1
216: 6 2 1
240: 6 3 2 2 1
256: 8 1
360: 6 3 3 1
384: 8 2 2 1
420: 5 4 2 2 1
MATHEMATICA
tomseq[n_]:=If[n<=1, {}, Most[FixedPointList[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]]]]];
omseqs=Table[Total/@tomseq[n], {n, 1000}];
Sort[Table[Position[omseqs, x][[1, 1]], {x, Union[omseqs]}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 14 2019
STATUS
approved