login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359777
Numbers k such that A356163(k) = 1 but A359774(k) = 0, where A359774 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even sum of prime factors, with repetition).
4
4, 8, 16, 32, 36, 60, 64, 72, 81, 84, 100, 120, 128, 132, 140, 144, 156, 162, 168, 196, 200, 204, 220, 225, 228, 240, 256, 260, 264, 276, 280, 288, 308, 312, 324, 336, 340, 348, 364, 372, 380, 392, 400, 408, 440, 441, 444, 450, 456, 460, 476, 480, 484, 492, 512, 516, 520, 528, 532, 540, 552, 560, 564
OFFSET
1,1
FORMULA
{k | A356163(k)-A359774(k) == 1}.
PROG
(PARI)
A356163(n) = (1-(((n=factor(n))[, 1]~*n[, 2])%2)); \\ After code in A001414.
memoA359773 = Map();
A359773(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359773, n, &v), v, v = -sumdiv(n, d, if(d<n, A356163(n/d)*A359773(d), 0)); mapput(memoA359773, n, v); (v)));
A359774(n) = (A359773(n)%2);
isA359767(n) = (A356163(n)&&!(A359774(n)));
CROSSREFS
Setwise difference A036349 \ A359775.
Setwise difference A359776 \ A335657.
Cf. also A359767, A359784.
Sequence in context: A125626 A141031 A061011 * A181800 A319180 A075090
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 15 2023
STATUS
approved