login
A359774
Parity of A359773, where A359773 is the Dirichlet inverse of A356163.
10
1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1
OFFSET
1
FORMULA
a(n) = A359773(n) mod 2.
a(n) <= A356163(n). [See comments in A359773]
PROG
(PARI)
A356163(n) = (1-(((n=factor(n))[, 1]~*n[, 2])%2)); \\ After code in A001414.
memoA359773 = Map();
A359773(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359773, n, &v), v, v = -sumdiv(n, d, if(d<n, A356163(n/d)*A359773(d), 0)); mapput(memoA359773, n, v); (v)));
A359774(n) = (A359773(n)%2);
CROSSREFS
Characteristic function of A359775, whose complement A359776 gives the positions of 0's.
Parity of A359773 and of A359789.
Cf. A001414, A359773, A359777 (where differs from A356163).
Cf. also A359764 [= a(A003961(n))], A359787.
Sequence in context: A359548 A359549 A359773 * A204220 A281814 A353566
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 13 2023
STATUS
approved